Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38573825

RESUMO

Ferriphaselus amnicola GF-20 is the first Fe-oxidizing bacterium isolated from the continental subsurface. It was isolated from groundwater circulating at 20 m depth in the fractured-rock catchment observatory of Guidel-Ploemeur (France). Strain GF-20 is a neutrophilic, iron- and thiosulfate-oxidizer and grows autotrophically. The strain shows a preference for low oxygen concentrations, which suggests an adaptation to the limiting oxygen conditions of the subsurface. It produces extracellular stalks and dreads when grown with Fe(II) but does not secrete any structure when grown with thiosulfate. Phylogenetic analyses and genome comparisons revealed that strain GF-20 is affiliated with the species F. amnicola and is strikingly similar to F. amnicola strain OYT1, which was isolated from a groundwater seep in Japan. Based on the phenotypic and phylogenetic characteristics, we propose that GF-20 represents a new strain within the species F. amnicola.


Assuntos
Água Subterrânea , Ferro , Oxirredução , Filogenia , RNA Ribossômico 16S , Tiossulfatos , Água Subterrânea/microbiologia , Tiossulfatos/metabolismo , Ferro/metabolismo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , França , Genoma Bacteriano , Análise de Sequência de DNA , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/metabolismo
2.
Methods Mol Biol ; 2605: 169-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520394

RESUMO

The use of stable-isotope probing (SIP) allows tracing specific labeled substrates into fungi leading to a better understanding of their role in biogeochemical cycles and their relationship with their environment. Stable isotope probing combined with ribosomal RNA molecule, conserved in the three kingdoms of life, and messenger RNA analysis permits the linkage of diversity and function. Here, we describe two methods designed to investigate the interactions between plants and their associated mycorrhizal compartment by tracing carbon flux from the host plant to its symbionts.


Assuntos
Micorrizas , RNA , Marcação por Isótopo/métodos , Micorrizas/genética , Isótopos , RNA Ribossômico/genética , Plantas/genética , Plantas/microbiologia , Isótopos de Carbono
3.
Microb Ecol ; 83(1): 137-150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33792742

RESUMO

Rare species are crucial components of the highly diverse soil microbial pool and over-proportionally contribute to the soil functions. However, much remains unknown about their assembling rules. The biogeographic patterns and species aggregations of the rare bacterial biosphere were assessed using 140 soil samples from a gradient of 2000 km across the main tea-producing areas in China. About 96% OTUs with ~40% sequences were classified as rare taxa. The rare bacterial communities were significantly affected by geographical regions and showed distance-decay effects, indicating that the rare bacteria are not cosmopolitan, they displayed a pattern of limited dispersal and were restricted to certain sites. Variation partitioning analysis (VPA) revealed that environmental variation and spatial factors explained 12.5% and 6.4%, respectively, of the variance in rare bacterial community. The Mantel and partial Mantel tests also showed that the environmental factors had stronger (~3 times) impacts than spatial factors. The null model showed that deterministic processes contributed more than stochastic processes in rare bacterial assembly (75% vs. 25%). There is likely an enrichment in ecological functions within the rare biosphere, considering this high contribution of deterministic processes in the assembly. In addition, the assembly of rare taxa was found to be mainly driven by soil pH. Overall, this study revealed that rare bacteria were not cosmopolitan, and their assembly was more driven by deterministic processes. These findings provided a new comprehensive understanding of rare bacterial biogeographic patterns and assembly rules.


Assuntos
Microbiologia do Solo , Solo , Bactérias/genética , China
4.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32149354

RESUMO

Fe-oxidizing bacteria of the family Gallionellaceae are major players in the Fe biogeochemical cycle in freshwater. These bacteria thrive in redox transition zones where they benefit from both high Fe concentrations and microaerobic conditions. We analysed the Gallionellaceae genomic diversity in an artesian hard-rock aquifer where redox transition zones develop (i) in the subsurface, where ancient, reduced groundwater mixes with recent oxygenated groundwater, and (ii) at the surface, where groundwater reaches the open air. A total of 15 new draft genomes of Gallionellaceae representing to 11 candidate genera were recovered from the two redox transition zones. Sulfur oxidation genes were encoded in most genomes while denitrification genes were much less represented. One genus dominated microbial communities belowground and we propose to name it 'Candidatus Houarnoksidobacter'. The two transition zones were populated by completely different assemblages of Gallionellaceae despite the almost constant upward circulation of groundwater between the two zones. The processes leading to redox transition zones, oxygen diffusion at the surface or groundwater mixing in subsurface, appear to be a major driver of the Gallionellaceae diversity.


Assuntos
Gallionellaceae , Água Subterrânea , Bactérias/genética , Água Doce , Gallionellaceae/genética , Oxirredução
5.
PLoS One ; 13(12): e0209089, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596675

RESUMO

Agriculture is undergoing important changes in order to meet sustainable soil management with respect to biodiversity (namely agroecology). Within this context, alternative solutions to mineral fertilizers such as agricultural biostimulants are thus promoted and being developed. The mechanisms by which some soil biostimulants sustain soil biological functioning and indirectly increase crop yields are still unknown. Our goal in the present study was to demonstrate if and to what extent the application of a soil biostimulant affects the soil heterotrophic microbial communities that are involved in organic matter decomposition and carbon mineralization. We hypothesized that the addition of a biostimulant results in changes in the composition and in the biomass of soil microbial communities. This in turn increases the mineralization of the organic matter derived from crop residues. We performed soil microcosm experiments with the addition of crop residues and a biostimulant, and we monitored the organic carbon (orgC) mineralization and the microbial biomass, along with the microbial community composition by sequencing 16S rRNA gene and ITS amplicons. The addition of a soil biostimulant caused a pH neutralizing effect and simultaneous enhancement of the orgC mineralization of crop residues (+ 400 µg orgC g-1 dry soil) and microbial biomass (+ 60 µg orgC g-1 dry soil) that were linked to changes in the soil microbial communities. Our findings suggest that the soil carbon mineralization enhancement in the presence of the biostimulant was supported by the specific recruitment of soil bacteria and fungi. Whereas archaea remained stable, several operational taxonomic units (OTUs) of indigenous soil bacteria and fungi were enriched and affiliated with known microbial decomposers such as Cytophagaceae, Phaselicystis sp., Verrucomicrobia, Pseudomonas sp., Ramicandelaber sp., and Mortierella sp., resulting in lower soil microbial richness and diversity.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiologia do Solo , Solo/química , Agricultura , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Biodiversidade , Biomassa , Carbono/metabolismo , Fertilizantes/análise , Fungos/genética , Nitrogênio/análise , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
6.
PeerJ ; 5: e3454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28607843

RESUMO

BACKGROUND: Within the root endosphere, fungi are known to be important for plant nutrition and resistance to stresses. However, description and understanding of the rules governing community assembly in the fungal fraction of the plant microbiome remains scarce. METHODS: We used an innovative DNA- and RNA-based analysis of co-extracted nucleic acids to reveal the complexity of the fungal community colonizing the roots of an Agrostis stolonifera population. The normalized RNA/DNA ratio, designated the 'mean expression ratio', was used as a functional trait proxy. The link between this trait and phylogenetic relatedness was measured using the Blomberg's K statistic. RESULTS: Fungal communities were highly diverse. Only ∼1.5% of the 635 OTUs detected were shared by all individuals, however these accounted for 33% of the sequence number. The endophytic fungal communities in plant roots exhibit phylogenetic clustering that can be explained by a plant host effect acting as environmental filter. The 'mean expression ratio' displayed significant but divergent phylogenetic signals between fungal phyla. DISCUSSION: These results suggest that environmental filtering by the host plant favours the co-existence of related and similar OTUs within the Basidiomycota community assembly, whereas the Ascomycota and Glomeromycota communities seem to be impacted by competitive interactions which promote the co-existence of phylogenetically related but ecologically dissimilar OTUs.

7.
Methods Mol Biol ; 1399: 151-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26791502

RESUMO

The use of stable-isotope probing (SIP) allows tracing specific labeled substrates into fungi leading to a better understanding of their role in biogeochemical cycles and their relationship with their environment. Stable-isotope probing combined with ribosomal RNA molecule, conserved in the three kingdoms of life, and messenger RNA analysis permits the linkage of diversity and function. Here, we describe two methods designed to investigate the interactions between plant and its associated mycorrhizal compartment by tracing carbon flux from the host plant to its symbionts.


Assuntos
Marcação por Isótopo/métodos , Micorrizas/genética , RNA Ribossômico/genética , Microbiologia do Solo , Micorrizas/isolamento & purificação , Plantas/genética , Plantas/microbiologia , Sondas RNA/genética , Simbiose
8.
Virus Evol ; 2(2): vew025, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29492276

RESUMO

A new group of viruses carrying naturally chimeric single-stranded (ss) DNA genomes that encompass genes derived from eukaryotic ssRNA and ssDNA viruses has been recently identified by metagenomic studies. The host range, genomic diversity, and abundance of these chimeric viruses, referred to as cruciviruses, remain largely unknown. In this article, we assembled and analyzed thirty-seven new crucivirus genomes from twelve peat viromes, representing twenty-four distinct genome organizations, and nearly tripling the number of available genomes for this group. All genomes possess the two characteristic genes encoding for the conserved capsid protein (CP) and a replication protein. Additional ORFs were conserved only in nearly identical genomes with no detectable similarity to known genes. Two cruciviruses possess putative introns in their replication-associated genes. Sequence and phylogenetic analyses of the replication proteins revealed intra-gene chimerism in at least eight chimeric genomes. This highlights the large extent of horizontal gene transfer and recombination events in the evolution of ssDNA viruses, as previously suggested. Read mapping analysis revealed that members of the 'Cruciviridae' group are particularly prevalent in peat viromes. Sequences matching the CP ranged from 0.6 up to 10.9 percent in the twelve peat viromes. In contrast, from sixty-nine available viromes derived from other environments, only twenty-four contained cruciviruses, which on average accounted for merely 0.2 percent of sequences. Overall, this study provides new genome information and insights into the diversity of chimeric viruses, a necessary first step in progressing toward an accurate quantification and host range identification of these new viruses.

9.
Sci Rep ; 5: 14612, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26440376

RESUMO

Peatlands are an important global carbon reservoir. The continued accumulation of carbon in peatlands depends on the persistence of anoxic conditions, in part induced by water saturation, which prevents oxidation of organic matter, and slows down decomposition. Here we investigate how and over what time scales the hydrological regime impacts the geochemistry and the bacterial community structure of temperate peat soils. Peat cores from two sites having contrasting groundwater budgets were subjected to four controlled drought-rewetting cycles. Pore water geochemistry and metagenomic profiling of bacterial communities showed that frequent water table drawdown induced lower concentrations of dissolved carbon, higher concentrations of sulfate and iron and reduced bacterial richness and diversity in the peat soil and water. Short-term drought cycles (3-9 day frequency) resulted in different communities from continuously saturated environments. Furthermore, the site that has more frequently experienced water table drawdown during the last two decades presented the most striking shifts in bacterial community structure, altering biogeochemical functioning of peat soils. Our results suggest that the increase in frequency and duration of drought conditions under changing climatic conditions or water resource use can induce profound changes in bacterial communities, with potentially severe consequences for carbon storage in temperate peatlands.


Assuntos
Bactérias/crescimento & desenvolvimento , Carbono/análise , Microbiologia do Solo , Solo/química , Água/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/análise , DNA Bacteriano/genética , Ecossistema , Fenômenos Geológicos , Metagenoma , RNA Ribossômico 16S/genética
10.
Front Microbiol ; 6: 375, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972855

RESUMO

Microviridae, a family of bacteria-infecting ssDNA viruses, is one of the still poorly characterized bacteriophage groups, even though it includes phage PhiX174, one of the main models in virology for genomic and capsid structure studies. Recent studies suggest that they are diverse and well represented in marine and freshwater virioplankton as well as in human microbiomes. However, their diversity, abundance, and ecological role are completely unknown in soil ecosystems. Here we present the comparative analysis of 17 completely assembled Microviridae genomes from 12 viromes of a Sphagnum-dominated peatland. Phylogenetic analysis of the conserved major capsid protein sequences revealed the affiliation to Gokushovirinae and Pichovirinae as well as to two newly defined subfamilies, the Aravirinae and Stokavirinae. Additionally, two new distinct prophages were identified in the genomes of Parabacteroides merdae and Parabacteroides distasonis representing a potential new subfamily of Microviridae. The differentiation of the subfamilies was confirmed by gene order and similarity analysis. Relative abundance analysis using the affiliation of the major capsid protein (VP1) revealed that Gokushovirinae, followed by Aravirinae, are the most abundant Microviridae in 11 out of 12 peat viromes. Sequences matching the Gokushovirinae and Aravirinae VP1 matching sequences, respectively, accounted for up to 4.19 and 0.65% of the total number of sequences in the corresponding virome, respectively. In this study we provide new genome information of Microviridae and pave the way toward quantitative estimations of Microviridae subfamilies.

11.
New Phytol ; 206(4): 1196-206, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25655016

RESUMO

Plants can no longer be considered as standalone entities and a more holistic perception is needed. Indeed, plants harbor a wide diversity of microorganisms both inside and outside their tissues, in the endosphere and ectosphere, respectively. These microorganisms, which mostly belong to Bacteria and Fungi, are involved in major functions such as plant nutrition and plant resistance to biotic and abiotic stresses. Hence, the microbiota impact plant growth and survival, two key components of fitness. Plant fitness is therefore a consequence of the plant per se and its microbiota, which collectively form a holobiont. Complementary to the reductionist perception of evolutionary pressures acting on plant or symbiotic compartments, the plant holobiont concept requires a novel perception of evolution. The interlinkages between the plant holobiont components are explored here in the light of current ecological and evolutionary theories. Microbiome complexity and the rules of microbiotic community assemblage are not yet fully understood. It is suggested that the plant can modulate its microbiota to dynamically adjust to its environment. To better understand the level of plant dependence on the microbiotic components, the core microbiota need to be determined at different hierarchical scales of ecology while pan-microbiome analyses would improve characterization of the functions displayed.


Assuntos
Microbiota , Plantas/microbiologia , Evolução Biológica
12.
Front Microbiol ; 6: 1494, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779149

RESUMO

Viruses impact microbial activity and carbon cycling in various environments, but their diversity and ecological importance in Sphagnum-peatlands are unknown. Abundances of viral particles and prokaryotes were monitored bi-monthly at a fen and a bog at two different layers of the peat surface. Viral particle abundance ranged from 1.7 x 10(6) to 5.6 x 10(8) particles mL(-1), and did not differ between fen and bog but showed seasonal fluctuations. These fluctuations were positively correlated with prokaryote abundance and dissolved organic carbon, and negatively correlated with water-table height and dissolved oxygen. Using shotgun metagenomics we observed a shift in viral diversity between winter/spring and summer/autumn, indicating a seasonal succession of viral communities, mainly driven by weather-related environmental changes. Based on the seasonal asynchrony between viral and microbial diversity, we hypothesize a seasonal shift in the active microbial communities associated with a shift from lysogenic to lytic lifestyles. Our results suggest that temporal variations of environmental conditions rather than current habitat differences control the dynamics of virus-host interactions in Sphagnum-dominated peatlands.

13.
Front Microbiol ; 6: 1457, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733990

RESUMO

This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities.

14.
PLoS One ; 9(7): e102561, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25033299

RESUMO

A metatranscriptomic approach was used to study community gene expression in a naturally occurring iron-rich microbial mat. Total microbial community RNA was reversely transcribed and sequenced by pyrosequencing. Characterization of expressed gene sequences provided accurate and detailed information of the composition of the transcriptionally active community and revealed phylogenetic and functional stratifications within the mat. Comparison of 16S rRNA reads and delineation of OTUs showed significantly lower values of metatranscriptomic-based richness and diversity in the upper parts of the mat than in the deeper regions. Taxonomic affiliation of rRNA sequences and mRNA genome recruitments indicated that iron-oxidizing bacteria affiliated to the genus Leptothrix, dominated the community in the upper layers of the mat. Surprisingly, type I methanotrophs contributed to the majority of the sequences in the deep layers of the mat. Analysis of mRNA expression patterns showed that genes encoding the three subunits of the particulate methane monooxygenase (pmoCAB) were the most highly expressed in our dataset. These results provide strong hints that iron-oxidation and methane-oxidation occur simultaneously in microbial mats and that both groups of microorganisms are major players in the functioning of this ecosystem.


Assuntos
Archaea/genética , Ferro/metabolismo , Leptothrix/genética , Metano/metabolismo , Oxigenases/genética , Sequência de Bases , Biodiversidade , Ecossistema , Perfilação da Expressão Gênica , Consórcios Microbianos/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
15.
ISME J ; 5(2): 285-304, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20668488

RESUMO

To extend comparative metagenomic analyses of the deep-sea, we produced metagenomic data by direct 454 pyrosequencing from bathypelagic plankton (1000 m depth) and bottom sediment of the Sea of Marmara, the gateway between the Eastern Mediterranean and the Black Seas. Data from small subunit ribosomal RNA (SSU rRNA) gene libraries and direct pyrosequencing of the same samples indicated that Gamma- and Alpha-proteobacteria, followed by Bacteroidetes, dominated the bacterial fraction in Marmara deep-sea plankton, whereas Planctomycetes, Delta- and Gamma-proteobacteria were the most abundant groups in high bacterial-diversity sediment. Group I Crenarchaeota/Thaumarchaeota dominated the archaeal plankton fraction, although group II and III Euryarchaeota were also present. Eukaryotes were highly diverse in SSU rRNA gene libraries, with group I (Duboscquellida) and II (Syndiniales) alveolates and Radiozoa dominating plankton, and Opisthokonta and Alveolates, sediment. However, eukaryotic sequences were scarce in pyrosequence data. Archaeal amo genes were abundant in plankton, suggesting that Marmara planktonic Thaumarchaeota are ammonia oxidizers. Genes involved in sulfate reduction, carbon monoxide oxidation, anammox and sulfatases were over-represented in sediment. Genome recruitment analyses showed that Alteromonas macleodii 'surface ecotype', Pelagibacter ubique and Nitrosopumilus maritimus were highly represented in 1000 m-deep plankton. A comparative analysis of Marmara metagenomes with ALOHA deep-sea and surface plankton, whale carcasses, Peru subsurface sediment and soil metagenomes clustered deep-sea Marmara plankton with deep-ALOHA plankton and whale carcasses, likely because of the suboxic conditions in the deep Marmara water column. The Marmara sediment clustered with the soil metagenome, highlighting the common ecological role of both types of microbial communities in the degradation of organic matter and the completion of biogeochemical cycles.


Assuntos
Archaea , Bactérias , Eucariotos , Sedimentos Geológicos/microbiologia , Metagenoma , Plâncton , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Enzimas/genética , Eucariotos/classificação , Eucariotos/genética , Genes de RNAr/genética , Metagenômica , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Plâncton/genética , Plâncton/microbiologia
16.
Ecol Lett ; 13(6): 776-91, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20426792

RESUMO

Environmental genomics and genome-wide expression approaches deal with large-scale sequence-based information obtained from environmental samples, at organismal, population or community levels. To date, environmental genomics, transcriptomics and proteomics are arguably the most powerful approaches to discover completely novel ecological functions and to link organismal capabilities, organism-environment interactions, functional diversity, ecosystem processes, evolution and Earth history. Thus, environmental genomics is not merely a toolbox of new technologies but also a source of novel ecological concepts and hypotheses. By removing previous dichotomies between ecophysiology, population ecology, community ecology and ecosystem functioning, environmental genomics enables the integration of sequence-based information into higher ecological and evolutionary levels. However, environmental genomics, along with transcriptomics and proteomics, must involve pluridisciplinary research, such as new developments in bioinformatics, in order to integrate high-throughput molecular biology techniques into ecology. In this review, the validity of environmental genomics and post-genomics for studying ecosystem functioning is discussed in terms of major advances and expectations, as well as in terms of potential hurdles and limitations. Novel avenues for improving the use of these approaches to test theory-driven ecological hypotheses are also explored.


Assuntos
Ecossistema , Meio Ambiente , Metagenômica , Animais , Biologia Computacional , Expressão Gênica , Proteômica
17.
Environ Microbiol ; 10(10): 2704-17, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18627413

RESUMO

Acidobacteria constitute a still poorly studied phylum that is well represented in soils. Recent studies suggest that members of this phylum may be also abundant in deep-sea plankton, but their relative abundance and ecological role in this ecosystem are completely unknown. A recent screening of three metagenomic deep-sea libraries of bathypelagic plankton from the South Atlantic (1000 m depth), the Adriatic (1000 m depth) and the Ionian (3000 m depth) seas in the Mediterranean revealed an unexpected relative proportion of acidobacterial fosmids, which affiliated to the Solibacterales (Group 3), to the Group 11 and, most frequently, to the Group 6 of this diverse phylum. Here, we present the comparative analysis of 11 acidobacterial genome fragments containing the rrn operon from these Mediterranean libraries. A highly conserved syntenic region spanning up to 30 kb and containing up to 25 open reading frames was shared by Group 6 Acidobacteria. Synteny was also partially conserved in distantly related acidobacterial genome fragments derived from a metagenomic soil library, indicating a remarkable conservation of this genomic region within these Acidobacteria. A search for Acidobacteria-specific hits in directly comparable, available fosmid-end sequences from soil and marine metagenomic libraries showed a significant increase of their relative proportion in plankton libraries as a function of increasing depth reaching, at high depth, levels nearly comparable to those of soil. Thus, our results suggest that Acidobacteria are abundant and represent a significant proportion of the microbial community in the deep-sea ecosystem.


Assuntos
Bactérias/classificação , Bactérias/genética , Genes de RNAr , Plâncton/microbiologia , Água do Mar/microbiologia , Bactérias/isolamento & purificação , Sequência Conservada , DNA Bacteriano/química , DNA Bacteriano/genética , Mar Mediterrâneo , Dados de Sequência Molecular , Fases de Leitura Aberta , Óperon , Análise de Sequência de DNA , Homologia de Sequência , Sintenia
18.
BMC Mol Biol ; 9: 25, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18294364

RESUMO

BACKGROUND: The ubiquitous Rad50 and Mre11 proteins play a key role in many processes involved in the maintenance of genome integrity in Bacteria and Eucarya, but their function in the Archaea is presently unknown. We showed previously that in most hyperthermophilic archaea, rad50-mre11 genes are linked to nurA encoding both a single-strand endonuclease and a 5' to 3' exonuclease, and herA, encoding a bipolar DNA helicase which suggests the involvement of the four proteins in common molecular pathway(s). Since genetic tools for hyperthermophilic archaea are just emerging, we utilized immuno-detection approaches to get the first in vivo data on the role(s) of these proteins in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. RESULTS: We first showed that S. acidocaldarius can repair DNA damage induced by high doses of gamma rays, and we performed a time course analysis of the total levels and sub-cellular partitioning of Rad50, Mre11, HerA and NurA along with the RadA recombinase in both control and irradiated cells. We found that during the exponential phase, all proteins are synthesized and display constant levels, but that all of them exhibit a different sub-cellular partitioning. Following gamma irradiation, both Mre11 and RadA are immediately recruited to DNA and remain DNA-bound in the course of DNA repair. Furthermore, we show by immuno-precipitation assays that Rad50, Mre11 and the HerA helicase interact altogether. CONCLUSION: Our analyses strongly support that in Sulfolobus acidocaldarius, the Mre11 protein and the RadA recombinase might play an active role in the repair of DNA damage introduced by gamma rays and/or may act as DNA damage sensors. Moreover, our results demonstrate the functional interaction between Mre11, Rad50 and the HerA helicase and suggest that each protein play different roles when acting on its own or in association with its partners. This report provides the first in vivo evidence supporting the implication of the Mre11 protein in DNA repair processes in the Archaea and showing its interaction with both Rad50 and the HerA bipolar helicase. Further studies on the functional interactions between these proteins, the NurA nuclease and the RadA recombinase, will allow us to define their roles and mechanism of action.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Raios gama , Sulfolobus acidocaldarius/enzimologia , Sulfolobus acidocaldarius/efeitos da radiação , Anticorpos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cromossomos/metabolismo , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Imunoprecipitação , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Recombinases/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/efeitos da radiação , Sulfolobus acidocaldarius/citologia , Sulfolobus acidocaldarius/efeitos dos fármacos , Fatores de Tempo
19.
Environ Microbiol ; 8(4): 612-24, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16584473

RESUMO

The novel candidate phylum Poribacteria is specifically associated with several marine demosponge genera. Because no representatives of Poribacteria have been cultivated, an environmental genomic approach was used to gain insights into genomic properties and possibly physiological/functional features of this elusive candidate division. In a large-insert library harbouring an estimated 1.1 Gb of microbial community DNA from Aplysina aerophoba, a Poribacteria-positive 16S rRNA gene locus was identified. Sequencing and sequence annotation of the 39 kb size insert revealed 27 open reading frames (ORFs) and two genes for stable RNAs. The fragment exhibited an overall G+C content of 50.5% and a coding density of 86.1%. The 16S rRNA gene was unlinked from a conventional rrn operon. Its flanking regions did not show any synteny to other 16S rRNA encoding loci from microorganisms with unlinked rrn operons. Two of the predicted hypothetical proteins were highly similar to homologues from Rhodopirellula baltica. Furthermore, a novel kind of molybdenum containing oxidoreductase was predicted as well as a series of eight ORFs encoding for unusual transporters, channel or pore forming proteins. This environmental genomics approach provides, for the first time, genomic and, by inference, functional information on the so far uncultivated, sponge-associated candidate division Poribacteria.


Assuntos
Bactérias , Proteínas de Bactérias/genética , Genoma Bacteriano , Poríferos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Ribossômico/genética , Biblioteca Genômica , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
20.
Environ Microbiol ; 6(9): 970-80, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15305922

RESUMO

Complex genomic libraries are increasingly being used to retrieve complete genes, operons or large genomic fragments directly from environmental samples, without the need to cultivate the respective microorganisms. We report on the construction of three large-insert fosmid libraries in total covering 3 Gbp of community DNA from two different soil samples, a sandy ecosystem and a mixed forest soil. In a fosmid end sequencing approach including 5376 sequence tags of approximately 700 bp length, we show that mostly bacterial and, to a much lesser extent, archaeal and eukaryotic genome fragments (approximately 1% each) have been captured in our libraries. The diversity of putative protein-encoding genes, as reflected by their distribution into different COG clusters, was comparable to that encoded in complete genomes of cultivated microorganisms. A huge variety of genomic fragments has been captured in our libraries, as seen by comparison with sequences in the public databases and by the large variation in G+C contents. We dissect differences between the libraries, which relate to the different ecosystems analysed and to biases introduced by different DNA preparations. Furthermore, a range of taxonomic marker genes (other than 16S rRNA) has been identified that allows the assignment of genome fragments to specific lineages. The complete sequences of two genome fragments identified as being affiliated with Archaea, based on a gene encoding a CDC48 homologue and a thermosome subunit, respectively, are presented and discussed. We thereby extend the genomic information of uncultivated crenarchaeota from soil and offer hints to specific metabolic traits present in this group.


Assuntos
Archaea/genética , Proteínas de Bactérias/genética , Biblioteca Gênica , Genoma Bacteriano , Microbiologia do Solo , Adenosina Trifosfatases , Composição de Bases , Sequência de Bases , Proteínas de Ciclo Celular/genética , DNA Ribossômico/genética , Ecossistema , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA